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Outline today
•What types of models are out there? 

•Why explainable? 

- Model builders vs. Model users 

- societal factors 

•How? 

- Experiential learning! 

- FluidExplorer vs. TreePOD 

•Conclusions
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Computational 
Science vs.  

 Data Science
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Scientific Method
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Real world A model

HypothesisObservation

Validation

after Hans Christian Ørsted, "First Introduction to General Physics" (1811)
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Validation ➙ Prediction
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4 Paradigms of Science

•empirical: observe, then derive 
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Real world A model

HypothesisObservation

Prediction

Jim Gray, “eScience -- A Transformed Scientific Method”, (2007)
https://en.wikipedia.org/wiki/File:Jim_Gray_portrait,_1999.jpg

1944-2007
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4 Paradigms of Science
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4 Paradigms of Science

•empirical: observe, then derive 

•predictive: derive, then observe 

•computational: simulate 
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computational 
model
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4 Paradigms of Science

•empirical: observe, then derive 

•predictive: derive, then observe 

•computational: simulate 

•data-driven: measure
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Real world

HypothesisData

Jim Gray, “eScience -- A Transformed Scientific Method”, (2007)
https://en.wikipedia.org/wiki/File:Jim_Gray_portrait,_1999.jpg
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Three types of modelling

•computational: the simulation of 
discretized mathematical models 
(computational science) 

•statistical: data-driven — extracting 
statistical models from data 

•empirical: simple, often linear models
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Computational  Modelling

•(almost) every discipline has these models  

•Examples: 

- Navier-Stokes, Maxwell, etc. 

- Population Dynamics 

•computational science: experimentation 
through simulation of discretized models
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[Potter et al. 2009]

[Bruckner & Möller 2010] [Bergner et al. 2013]

[Coffey et al. 2013]
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Statistical Modeling

•“Mainstream” understanding of Data Science 

•Classical (machine learning) approaches: 

- Clustering 

- Classification 

- Regression 

- (dimensionality reduction, outlier 
detection, etc)
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Dim reduction — [Ingram et al. 2010] Regression — [Mühlbacher & Piringer 2013]

Classification — [Linhardt et al. 2019?] Clustering — [Sedlmair et al. 2018]
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Empirical Modeling

•often no explicit modelling or only 
simple models, e.g. 

• linear models 

• weighted averages etc. 

• examples: spreadsheets, rankings
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LineUp: Gratzl et al. 
2013
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LineUp: Gratzl et al. 
2013
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Why do we need 
explainable models?
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Acting upon models
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Decisions
 Models 

(predictions)
Data
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Building vs. Using

• building models 
- developers vs. data 

scientists vs. 
computational experts 

- hackers vs. scripters 
vs. application user
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Decisions
 Models 

(predictions)
Data

• using models 
- decision makers 
- domain experts 
- audience / 

public
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Building vs. Using

• building models 
- validation 
- uncertainty
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Decisions
 Models 

(predictions)
Data

• using models 
- trust 
- tradeoffs + risks
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Supporting the user

•hypothesis creation 

•uncertainty / risk analysis 

•sensitivity analysis / model uncertainty 

•decision making / sense making 
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Decisions
 Models 

(predictions)
Data
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Why?: Societal factors
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Ethics

•cars make decisions on who to run over and 
who not 

•who should the company hire? 

•which update from which friend should you be 
shown? 

•which convict is more likely to re-offend? 

•which news item / movie should we 
recommend to people?
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https://www.ted.com/talks/zeynep_tufekci_machine_intelligence_makes_human_morals_more_important#t-157020
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Laws

•EU’s General Data Protection Regulation: 

•incl Article 22: Automated individual decision-making, including profiling 

•prohibits any “decision based solely on automated processing, including 
profiling” which “significantly affects” a data subject 

•Discrimination: Paragraph 71 of the recitals (the preamble to the GDPR, 
which explains the rationale behind it but is not itself law) explicitly 
requires data controllers to “implement appropriate technical and 
organizational measures” that “prevents, inter alia, discriminatory effects” 
on the basis of processing sensitive data 

•Right to explanation: Articles 13 and 14 state that, when profiling takes 
place, a data subject has the right to “meaningful information about the 
logic involved.” 
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Goodman, B. & Flaxman, S. 
European Union regulations on algorithmic decision-making and a “right to explanation” 
AI Magazine, 2017 
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Outline today
•What types of models are out there? 

•Why explainable? 

- Model builders vs. Model users 

- societal factors 

•How? 

- Experiential learning! 

- FluidExplorer vs. TreePOD 

•Conclusions
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How?

 28

From Philip Grohs
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How?
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Alex Schindler
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How — our approach

https://youtu.be/5d71xhEbjDg
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FluidExplorer 
Fluid animation
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Special effects

•Fluid simulation is 
heavily used in the 
motion picture industry 

•Most common 
animation packages 
include solvers or offer 
add-ons 

•Problem: Difficult to 
control for visual 
effects artists
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Special effects (2)
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Autodesk Maya 2010

•Tens of parameters
•Hard to predict results
•Time-consuming trial & 
error
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Overview 
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Visualization 

•Body Level One 

- Body Level Two 

•Body Level Three 

•Body Level Four 

•Body Level Five
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TreePOD —  
decision tree analysis
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Decision trees are important 
for classification in many fields
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Explain classes  
 by decision rules on features 

Trained for data  
= supervised learning 

Understandable structure  
for analysis and prediction 

UCI Lab Census 1994 Dataset
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Building decision trees  
involves multiple trade-offs
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underfitting vs. overfitting  
„bias-variance“ trade-off 
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involves multiple trade-offs
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underfitting vs. overfitting  
„bias-variance“ trade-off 

accuracy vs. interpretability 
e.g., nice decision borders 
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underfitting vs. overfitting  
„bias-variance“ trade-off 

accuracy vs. interpretability 
e.g., nice decision borders 
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Building decision trees  
involves multiple trade-offs
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underfitting vs. overfitting  
„bias-variance“ trade-off 

accuracy vs. interpretability 
e.g., nice decision borders 

additional constraints  
e.g. feature acquisition costs



Torsten MöllerACSD, Jun 2019

Problem: Finding the tree  
representing the best trade-off
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Hard to automate 
 relies on qualitative judgements 

In practice: trial-and-error  
inefficient, low confidence 

Domain experts  
 ≠ statistical experts 
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Overview of TreePOD
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1) Create diverse tree candidates 
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Overview of TreePOD
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1) Create diverse tree candidates 
   global overview of what is possible 

Complexity

Accuracy
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Overview of TreePOD
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1) Create diverse tree candidates 
   global overview of what is possible 

2) Guide selection from candidates 
 by focusing on good trade-offs 

Complexity

Accuracy
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Creating diverse candidates by  
sampling algorithm parameters
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Parameters: 
 Feature Set 
 Termination Critera 
 Pruning method 
 ... 
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Guided visual exploration of 
candidate trees

 47



Torsten MöllerACSD, Jun 2019

Conclusions
•Three types of modelling: 

- Through first principles 
- Through data 
- Empirical 

•Why explainable? 

- improve algorithms 
- trust 
- bridge the model builder / model usage gap 
- ethics and law 

•How? 

- characterization of input-output relationships OR parameter tuning 
- we are really good in learning by trial-and-error
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Questions?

http://vda.cs.univie.ac.at 

torsten.moeller@univie.ac.at
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