

Federal Ministry Republic of Austria Transport, Idnovation and Technology

Austrian Computer Science Day 2019

"Business meets Computer Science"

Young Experts – Minute Madness

1	Svetlana Abramova
2	Adrian Dabrowski
3	Luca Debiasi
4	Amra Delic
5	Barbara Göbl
6	Gramoz Goranci
7	Pasquale Grippa
8	Kerstin Hammernik
9	Martin Häusler
10	Christoph Hofer

11	Daniela Kaufmann
12	Ema Kusen
13	David Leopoldseder
14	Christian Macho
15	Sebastian Neumaier
16	Tiago Santos
17	Michael Schwarz
18	Katta Spiel
19	Josef Tkadlec

Security and Privacy in Online Payment Systems: Empirical and Theoretical Perspectives

1

Svetlana Abramova Universität Innsbruck

Coin Selection Ain't So Easy...

Real world

Physical wallet

Digital world

Cryptocurrency wallet

... more details about cryptocurrencies on the poster!

Security and Privacy in Large-scale Infrastructure

Adrian Dabrowski
TU Wien

PRNU-based Detection of Morphed Face Images

3

Luca Debiasi Universität Salzburg

Subject A

Subject B

How can we detect morphed face images?

PRNU Photo Response Non-Uniformity

Group decision-making in the eTourism domain

4Amra Delic
TU Wien

How can we truly help groups in their travel related decision-making process?

Group setting comprises of:

- Variety of preferences
- Individuals of various personalities
- Social relationships

Research objectives:

- 1) Understand which individual and group factors influence choice satisfaction
- 2) Model and predict the decision-reaching approach of a group and
- 3) Predict the group choice

Group decision-making process:

- 1. Preference disclosure
- 2. Information / opinion exchange
- Final decision
- 4. Evaluation of the final decision

A Participatory Approach to a Mobile Serious Game to Foster Social Media Literacy

5 Barbara Göbl Universität Wien

User-Centered Serious Game Design

- Interdisciplinary Analysis of Social Media Practice
 - Mixed Methods
- Participatory Design:
 Game Elements and Learning Goals

Interaction Design

 Natural Language Interfaces in Learning Games

Dynamic Graph Algorithms and Graph Sparsification: New Techniques and Connections

6

Gramoz Goranci Universität Wien

Drone Delivery Systems

7Pasquale Grippa
AAU Klagenfurt

Variational Networks for Medical Image Reconstruction

8Kerstin Hammernik
TU Graz

Variational Networks for Medical Image Reconstruction

Kerstin Hammernik¹

¹Institute of Computer Graphics and Vision, Graz University of Technology

- hammernik@icg.tugraz.at
- O khammernik
- O khammernik

Introduction

Inverse problems in medical imaging

k-space → MR image

sinogram → CT image

Methods

To learn an unrolled gradient descent scheme for a fixed number of iterations ...

... including the data term weight and the regularization term

Variational Networks: Connecting two successful fields

Impact for medical imaging

Faster acquisition, improved patient safety

Reduced health care costs

Higher patient throughput

Improved image quality and reconstruction time

Direct integration into clinical workflow

Applications

Limited-Angle CT Reconstruction

Static MRI Reconstruction

Total Generalized Variation

		Reader scores regular		
Data set	Criterion	PI-CS TGV	Learning	p-value
	Artifact	3.60±0.57	1.65±0.07	0.0010
Coronal PD	Sharpness/Blur	2.90 ± 0.14	2.15 ± 0.07	0.0234
Coronal PD	SNR	2.60±0.28	1.45±0.21	0.0078
	Overall image quality	3.30 ± 0.14	2.05 ± 0.21	0.0010
	Artifact	3.95±0.07	2.90 ± 0.42	0.0020
Coronal fat-sat. PD	Sharpness/Blur	3.95±0.07	3.15±0.64	0.0020
Coronal tat-sat. PD	SNR	3.75 ± 0.21	2.90±0.7L	0.0049
	Overall image quality	3.95 ± 0.07	3.20 ± 0.57	0.0020

Evaluation using a 4-point ordinal scale

arpness: 1: no blurring, 2: mild blurring, 3: moderate blurring, 4: severe blurring SNR: 1: excellent, 2: good, 3: fair, 4: poor Overall image quality: 1: excellent, 2: good, 3: fair, 4: poor

Dynamic MRI Reconstruction

Infimal Convolution TGV

Variational Network

A NoSQL Model Repository for Scalable Model Versioning, Querying & Persistence

9

Martin Häusler Universität Innsbruck

A NoSQL Model Repository for Scalable Model Versioning, Querying & Persistence

Martin Häusler, PhD

Computational Topology in Machine Learning – Connecting the Dots

10

Christoph Hofer Universität Salzburg

Computational Topology in Machine Learning –

Christoph D. Hofer University of Salzburg

Connecting the Dots

Circuit Verification

11 Daniela Kaufmann JKU Linz

CIRCUIT VERIFICATION

Problem

Does the circuit always compute the correct result?

Approach

Formal Verification & Automated Reasoning

J⊻U Daniela Kaufmann, FMV, JKU Linz

Emotion-exchange motifs:

Uncovering the basic building blocks of emotion-annotated communication networks

12 Ema Kusen WU Wien

Emotion-exchange motifs: Uncovering the basic building blocks of emotion-annotated communication networks

Ema Kusen, Vienna University of Economics and Business (WU)

OBJECTIVES

- The impact of emotions on user behavior in OSNs.
- A multiplex model to represent an emotion-annotated communication network.
- A collection of emotion-exchange motifs.

RESEARCH METHOD


```
Algorithm 1: Motif detection.
 1 Input: input_network;
 2 Output: list_of_motifs;
 3 Initialize: i = 0;
4 # ENUMERATE AND CLASSIFY SUBGRAPHS
 5 def procedure: esu_vf2(list_layers)
 6 foreach l in list_layers do
        subgraphs = esu(l)
       foreach s in subgraphs do
           subgraphs' = subgraphs \ s
           foreach s' in subgraphs' do
               if vf2(s, s') then
                    assign_common_isomorphism_class
                    subgraphs' = subgraphs' \ s'
                    subgraphs = subgraphs \ s'
17
18 end
20 # GENERATE LAYERS AND INTER-LAYERS
21 detect layers in input network
22 layer_negative.add_edges_from(layer_anger, layer_sadness, layer_disgust, layer_fear)
23 layer_positive.add_edges_from(layer_joy, layer_anticipation, layer_trust)
24 foreach i in range(length(V(input_network))) do
       if v_i \in V(layer\_negative) & v_i \in V(layer\_positive) then
           inter_layer.add_edges_from(layer_negative.edge_containing(vi),
           layer_positive.edge_containing(vi))
29 list_layers = [layer_anger, layer_joy, ... , layer_surprise, layer_negative, layer_positive,
   interlayer, input_network]
30 esu_vf2(list_layers)
31 # GENERATE NULL MODELS
32 while i < 1000 \text{ do}
       foreach l \in list\_layers do
          null[1] = matching(l.in_degree(), l.outdegree())
       esu_vf2(null)
      i = i+1
```

Simulation-based Code Duplication in a Dynamic Compiler

13David Leopoldseder
JKU Linz

SIMULATION-BASED CODE DUPLICATION IN A DYNAMIC COMPILER

David Leopoldseder, JKU Linz

Problem

→ Control-flow **prohibits** many optimizations

Solution

Approach

JYU

GraalVM...

ORACLE

Scan me

Preventing and Repairing Build Breakage

14

Christian Macho AAU Klagenfurt

Preventing and Repairing Build Breakage

[ERROR] Failed to execute goal on project gdx-backend-robovm: Could not resolve dependencies for project com.badlogicgames.gdx:gdx-backend-robovm:jar:1.5.5-SN APSHOT: The following artifacts could not be resolved: org.robovm:robovm-cocoat ouch:jar:1.0.0-SNAPSHOT, org.robovm:robovm-objc:jar:1.0.0-SNAPSHOT, org.robovm:robovm-rt:jar:1.0.0-SNAPSHOT: Could not find artifact org.robovm:robovm-cocoato uch:jar:1.0.0-SNAPSHOT in sonatype-nexus-snapshots (https://oss.sonatype.org/content/repositories/snapshots) -> [Help 1]

Prevent from Failing

Christian Macho

Semantic Enrichment of Open Data on the Web

15
Sebastian Neumaier
WU Wien

Semantic Enrichment of **Open Data** on the Web

Or: How to build an Open Data Knowledge Graph

PROBLEM

Quality issues:

- Heterogeneity
- Discoverability
- Integration

APPROACH

Monitoring and analysis

Semantic labelling/annotation

Search & integration

Evolution of Online Communities:

Distilling Temporal Patterns in User Behavior and Community Lifecycles

16Tiago Santos
TU Graz

Evolution of Online Communities

Distilling Temporal Patterns in User Behavior and Community Lifecycles

How and **why** do some online communities succeed, while

others do not?

→ Understand and **model** community fundamentals:

→ **Predict** community size and timing of community lifecycles

Software-based Side-Channel Attacks and Defenses in Restricted Environments

17
Michael Schwarz
TU Graz

Evaluating Experiences of Autistic Children with Technologies in Co-Design

18Katta Spiel
TU Wien

ADAJA Claude

ÖXE Oliver

PRODRAW Andy

RATTLE C

THINKM Blaine

SOUND CUBES

Quentin

DSMART Dean

TIME MACHINE
Yvan & Hank

Three Years, Eight Technologies

Katta Spiel TU Wien

FAKULTÄT FÜR !NFORMATIK

Faculty of Informatics

A role of graph structures in evolutionary processes

19Josef Tkadlec
IST Austria

Moran process on a graph G

$$strength(\bigcirc) = 1$$

$$strength(\bigcirc) = r > 1$$

Quantity of interest:

Fixation probability fp(G,r) of a single invading mutant with strength r.

$$G_n$$

$$\lim_{n\to\infty} \operatorname{fp}(G_n, r) \qquad 1 - 1/r \qquad = \qquad 1 - 1/r \qquad < \qquad 1 - 1/r^2 \qquad \ll \qquad 1$$