

Measuring the Business Value of Recommender Systems

Dietmar Jannach, University of Klagenfurt

dietmar.jannach@aau.at

Recommender Systems

Recommender Systems

- A central part of our daily user experience
 - They help us locate potentially interesting things
 - They serve as filters in times of information overload
 - They have an impact user behavior and business
- One of the most successful applications of Al

Recommendations everywhere

Recommendations everywhere

Recommendations everywhere

A field with a tradition

- 1970s: Early roots in IR and what was called "Selective Dissemination of Information"
- 1990s: A field develops, "content-based" approaches, Collaborative Filtering
- 2000s and beyond: The Netflix Prize and its implications
- Today and the future:
 - Deep learning everywhere
 - But are we focusing on the most important problems?

The recommendation problem

- A very general definition:
 - "Find a good/optimal selection of items to place in the recommendation list(s) of users"
- The corresponding questions:
 - What determines a good/optimal selection?
 - Help users find something new?
 - Show the user alternatives to a certain item?
 - The diversity of the recommendations?
 - Good or optimal for whom?
 - The consumer, the platform or retailer, the manufacturer, all of them?

An academic problem abstraction

Recommendation as a matrix completion task

	ltem1	ltem2	ltem3	ltem4	Item5
Alice	5	?	4	4	?
User1	3	1	?	3	3
User2	?	3	?	?	5
User3	3	?	1	5	4
User4	?	5	5	?	1

- Goal:
 - Learn/Optimize a prediction function from the data
- "Offline" quality assessment of algorithms
 - Prediction error on the test data

Contrasts

	Item1	Item2	Item3	Item4	Item5
Alice	5	?	4	4	?
User1	3	1	?	3	3
User2	?	3	?	?	5
User3	3	?	1	5	4
User4	?	5	5	?	1

- No "value" perspective in academic abstraction
- Simplifying assumption
 - Being able to predict the relevance is enough
- Implicit focus on consumer value

In this short talk

- We review how organizations measure the business value of recommenders
 - Based on a literature review
- Main questions
 - What measures are used?
 - What are the reported effects?

Typical quotes about value

- "35% of Amazon.com's revenue is generated by its recommendation engine."
- "Netflix says 80 percent of watched content is based on algorithmic recommendations"

Questions:

- How is the (additionally?) generated revenue exactly measured?
- Netflix: What does this mean for the business?

What is measured?

Considering both the impact and value perspective

Business Value of Recommenders Click-Through Adoption and Rates Sales and Revenue Distributions User Engagement and Behavior

Click-Through Rates

- Measures how many clicks are garnered by recommendations
 - Popular in the news recommendation domain
 - Google News: 38% more clicks compared to popularity-based recommendations
 - Forbes: 37% improvement through better algorithm compared to time-decayed popularity based method
 - swissinfo.ch: Similar improvements when considering only short-term navigation behavior
 - YouTube: Almost 200% improvement through covisitation method (compared to popular recommendations)

Adoption and Conversion Rates

- CTR usually not the ultimate measure
 - Cannot know if users actually liked/purchased what they clicked on (also: click baits)
- Therefore
 - Various, domain-specific adoption measures common
- YouTube, Netflix: "Long CTR"/ "Take rate"
 - only count click if certain amount of vide was watched

Adoption and Conversion Rates

- Alternatives when items cannot be viewed/read:
- eBay: "purchase-through-rate", "bid-through-rate"
- Other:
 - LinkedIn: Contact with employer made
 - Paper recommendation: "link-through", "citethrough"
 - E-Commerce marketplace: "click-outs"
 - Online dating: "open communications", "positive contacts per user"

Business Value of Recommenders Click-Through Adoption and Conversion Sales Distributions User Engagement and Behavior

Sales and Revenue

- CTR and adoption measures are good indicators of relevant recommendations
- However:
 - Often unclear how this translates into business value
 - Users might have bought an item anyway
 - Substantial increases might be not relevant for business when starting from a very low basis
- In addition:
 - Problem of measuring effects with flat-rate subscription models (e.g., Netflix).

Business Value of Recommenders Click-Through Adoption and Conversion Sales and Revenue Distributions User Engagement and Behavior

Sales and Revenue

- Only a few studies, some with limitations
- Video-on-demand study: 15% sales increase after introduction (no A/B test, could be novelty effect)
- DVD retailer study:
 - 35% lift in sales when using purchased-based recommendation method compared to "no recommendations"
 - Almost no effects when recommendations were based on view statistics
 - Choice of algorithm matters a lot

Business Value of Recommenders Click-Through Rates Adoption and Conversion Sales and Revenue Effects on Sales Distributions User Engagement and Behavior

Sales and Revenue

e-grocery studies:

- 1.8 % direct increase in sales in one study
- 0.3 % direct effects in another study
- However:
 - Up to 26% indirect effects, e.g., where customers were pointed to other categories in the store
 - "Inspirational" effect also observed in music recommendation in our own work

eBay:

- 6 % increase for similar item recommendations through largely improved algorithm
- (500 % increase in other study for specific area ..)

Sales and Revenue

Book store study:

- 28 % increase with recommender compared with "no recommender"; could be seasonal effects
- Drop of 17 % after removing the recommender
- Mobile games (own study)
 - 3.6 % more purchases through best recommender
 - More possible

Effects on Sales Distributions

- Goal is maybe not to sell more but different items
- Influence sales behavior of customers
 - stimulate cross-sales
 - sell off on-stock items
 - promote items with higher margin
 - long-tail recommendations

Effects on Sales Distributions

- Premium cigars study:
 - Interactive advisory system installed
 - Measurable shift in terms of what is sold
 - e.g., due to better-informed customers

Effects on Sales Distributions

• Netflix:

- Measure the "effective catalog size", i.e., how many items are actually (frequently) views
- Recommenders lead users away from blockbusters
- Online retailer study:
 - Comparison of different algorithms on sales diversity
 - Outcomes
 - Recommenders tend to decrease the overall diversity
 - Might increase diversity at individual level though

User Behavior and Engagement

- Assumption:
 - Higher engagement leads to higher re-subscription rates (e.g., at Spotify)
- News domain studies:
 - 2.5 times longer sessions, more sessions when there is a recommender
- Music domain study:
 - Up to 50% more user activity
- LinkedIn:
 - More clicks on job profiles after recommender introduced

Discussion

- Direct measurements:
 - Business value can almost be directly measured
 - Limitations
 - High revenue might be easy to achieve (promote discounted products), but not the business goal
 - Field tests often last only for a few weeks; field tests sometimes only with new customers (e.g., at Netflix)
 - Long-term indirect effects might be missed.

Discussion

- Indirect measurements:
 - CTR considered harmful
 - Recommendations as click-baits, but long term dissatisfaction possible
 - CTR optimization not in line with optimization for customer relevance
 - CTRs and improvements for already popular items easy to achieve
 - Adoption and conversion
 - Mobile game study: Clicks and certain types of conversions were not indicative for business value
 - Engagement
 - Difficult to assess when churn rates are already low

Value of Algorithmic Improvements

- Studies so far show
 - Introducing a recommender or implementing a more sophisticated algorithm often translate to large increases of the measures
- Holy Grail in applied machine learning
 - Find "best" model
 - Often tiny increases in abstract accuracy measures
- However
 - Academic research mostly compares algorithms of the same family

Value of Algorithmic Improvements

Furthermore

- Success of a recommender can depend on many factors, e.g., user trust, transparency, user interface
- swissinfo.ch study:
 - 30-40 % CTR increase with an adaptive algorithm
 - But: 100 % CTR increase after changing the screen position of the recommendation widget

Value of Offline Experiments

Value of Offline Experiments

- Academic research dominated by
 - simulation experiments using historical datasets and abstract performance measures
 - Easy to do, in principle reproducible, standardized
- However
 - Not clear if improvements using offline experiments translate into more effective recommenders

Value of Offline Experiments

- Netflix: "we do not find [offline experiments] to be as highly predictive of A/B test outcomes as we would like"
- Academic studies contrasting offline performance and user perception:
 - Correspondence almost never established
 - Higher accuracy does **not** lead to higher user satisfaction or quality perception of recommenders
 - Highly complex models can, e.g., lead to unfamiliar recommendations

Implications and Summary

- Demonstrated business value of recommenders in many domains
- Size of impact however depends on many factors like baselines, domain specifics etc.
- Measuring impact is generally not trivial
 - Choice of the evaluation measure matters a lot
 - CTR can be misleading

Implications for academia

- Focus more on recommender systems than solely on algorithms
- Investigate multi-stakeholder situations
 - E.g.: hotel recommendation on platform
 - hotel owner, platform, customer as stakeholders with potentially conflicting interests
- Offline experiments should measure multiple aspects (e.g., diversity) and consider domainspecific impacts
- Use broader methodological repertoire
 - user studies, surveys, simulations

Thank you

• Questions / Discussion